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Design in Unsteady Flows
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�����������������	There is a growing interest for design in unsteady flows, and it is becoming more tractable with 
increases in computing power 

�����������������	To achieve higher efficiencies, many critical applications could immediately benefit from a time-
accurate design approach: turbomachinery, open rotors, rotorcraft, wind turbines, maneuvering flight, 
flapping flight, etc. 

�����������������	Unsteady treatment will also directly enable multidisciplinary design, analysis, and optimization (MDO) 
involving other time-dependent physics (structures, acoustics, flow control techniques)

Design in Unsteady Flows 4
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Optimal Shape Design 5

~x vector of design variables

J objective/constraint function(s)

CFD gives us J (lift, drag, etc.),

but how do we get rJ e�ciently?

The Adjoint Approach!
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�����������������	Features of the continuous adjoint (linearize then discretize): 

�����������������	treat the continuous PDEs for the flow equations and recover a PDE system for the adjoint by 
using variational methods 

�����������������	obtain analytic expression for the gradient as a surface integral, i.e., a surface formulation 

�����������������	flexibility in choice of numerical methods 

�����������������	tedious derivation, especially boundary conditions 

�����������������	Features of the discrete adjoint (discretize then linearize): 

�����������������	treat the discretized form of the flow equations and recover a linear system for the adjoint 

�����������������	yields numerically exact gradient of the discretized functional 

�����������������	can benefit from the use of algorithmic differentiation (AD) 

�����������������	can suffer from large memory & compute overhead (large, possibly stiff linear system)

The Adjoint Approach 6
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�����������������	Challenges for unsteady design: 

�����������������	Computational cost can increase dramatically for 
time-accurate simulations. 

�����������������	Need to manage large amounts of solution data 
(adjoint requires reverse time integration). 

�����������������	Handling moving surfaces / dynamic meshes in the 
formulation requires the Arbitrary Lagrangian-
Eulerian (ALE) form of the flow equations.

Design in Unsteady Flows 7
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�����������������	For large-scale problems, need to avoid computational overhead 
and memory bottlenecks 

�����������������	Due to the complexity of the unsteady design problem, a 
continuous adjoint approach is appealing due to… 

�����������������	recovering a surface formulation for the gradient with no 
dependence on the volume mesh (use shape calculus) 

�����������������	flexibility in numerical methods to help mitigate convergence 
issues for stiff problems 

�����������������	the time-accurate, continuous adjoint PDE can also be 
discretized for different problems immediately (non-inertial or 
time-spectral approaches, for instance)

Design in Unsteady Flows 8
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�����������������	Unsteady Adjoint State of the Art: 

�����������������	Nadarajah and Jameson (2007) performed shape design for pitching airfoils using 
both continuous and discrete adjoints 

�����������������	Rumpfkiel and Zingg (2007) used a discrete adjoint for the control of unsteady 
flows in 2-D, including drag minimization and noise minimization for airfoils 

�����������������	Mani and Mavriplis (2008) and Mavriplis (2008) showed unsteady discrete adjoints 
for two- and three-dimensional, deforming, unstructured meshes (pitching wing) 

�����������������	Nielsen et al. (2010, 2012) developed a discrete adjoint approach for turbulent 
flows on dynamic, possibly overset, deforming meshes 

�����������������	Economon et al. (2013) investigated an unsteady continuous adjoint (inviscid) for 
the design of pitching airfoils in the presence of sliding mesh interfaces 

�����������������	Economon et al. (2014) developed a continuous adjoint surface formulation for 
the unsteady, compressible RANS equations on dynamic meshes

Design in Unsteady Flows 9
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Mathematical Formulation
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The Physical Problem 11
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�����������������	Arbitrary source term 
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The Optimization Problem 13
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1. Form the Lagrangian

2. Take first variation w.r.t. infinitesimal surface perturbations with 
simplifications from differential geometry

3. Introduce linearized N-S system (with frozen viscosity assumption)
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4. Integrate by parts (once each for time derivative term & convective 
term, twice for viscous terms)

5. Evaluate the boundary integral terms by hand given our knowledge of the 
equations and linearized boundary conditions
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6. Domain integrals form the adjoint equations along with admissible BCs identified from 
previous step - satisfying these removes dependence on flow variations

7. After satisfying the adjoint equations, recover the expression for the surface 
sensitivity from remaining boundary terms
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�����������������	Key result of the continuous adjoint 
derivation 

�����������������	Measures change in the objective 
function w.r.t. small perturbations in the 
local normal direction 

�����������������	Computed at each surface mesh node (at 
each time step!) at negligible cost from 
the flow and adjoint variables on the 
surface 

�����������������	Gradient expression is a surface integral: 
no dependence on the volume mesh 

�����������������	Offers physical insight and designer 
intuition 

Surface Sensitivity 17

Instantaneous Flow 
Solution

Instantaneous 
Sensitivity for a Drag 

Objective
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Numerical Results
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How do we implement the 
components of the optimal shape 

design loop?
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�����������������	In 3-D, parameterize by a Free-Form Deformation (FFD) approach 

�����������������	Origins in the computer graphics industry 

�����������������	Encapsulate geometry in a bounding box and create a mapping between 
the FFD control points and the mesh surface nodes (parameterize as a 
Bézier solid) 

�����������������	FFD control points become the DVs with the surface inheriting a smooth 
deformation

Geometry Parameterization 20
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Mesh Deformation 21
Solve the linear elasticity equations on the 
volume mesh to compute nodal displacements.
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�����������������	Unstructured meshes with median-dual control 
volumes (vertex-based) 

�����������������	Finite Volume Method with second-order 
schemes in space: 

�����������������	JST, Roe (+ limiting), HLLC, AUSM for convective fluxes 

�����������������	Average of gradients for viscous fluxes 

�����������������	Piecewise constant source terms 

�����������������	Similar schemes for spatially integrating the flow 
and adjoint, although the adjoint is treated with a 
non-conservative scheme 

�����������������	Dual-time stepping approach for second-order 
accurate time integration 

�����������������	Reverse time integration for the adjoint problem 
by writing/reading flow solutions to disk 
(checkpointing is possible)

Flow/Adjoint PDE Analysis 22
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�����������������	Dynamic meshes are required with the ALE formulation 

�����������������	Typically, either rigidly transforming or dynamically deforming grids 
are used 

�����������������	Must also satisfy the Geometric Conservation Law (GCL) when simulating 
unsteady flows on dynamic grids 

�����������������	The pitching wing results that follow are based on rigid mesh 
transformations (i.e., there is no relative motion between individual grid 
nodes) 

�����������������	Specify the angle of attack in time and pitch the mesh as a solid body 
about the chosen pitching axis:

Dynamic Meshes 23
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sin(!t)
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FFD control points

Linear Elasticity 
Equations

Finite Volume, 
Unstructured Flow solver

Finite Volume, 
Unstructured Adjoint solver

SLSQP Optimizer 
(Python / SciPy)



Pitching Wing
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Pitching Wing 26

�����������������	ONERA M6 wing as the baseline 
geometry 

�����������������	Pitching wing in transonic flow:  

�����������������	Mach = 0.8395  

�����������������	reduced frequency of 0.1682  

�����������������	mean alpha of 3.06 degrees  

�����������������	pitching amplitude of 2.5 degrees  

�����������������	Reynolds number = 11.72 million 

�����������������	Pitching about the y-axis through the root 
quarter-chord 

�����������������	25 time steps per period for 7 periods 

�����������������	RANS (S-A) equations on rigidly 
transforming meshes
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Pitching Wing 27

Animation

Flow Solution

Surface Sensitivities for 
a Drag Objective

(Euler Results  
for Illustration)
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Pitching Wing 28

20.3 % Reduction in Time-averaged Drag 

Constrained, Time-averaged Drag Minimization 
with Lift and Maximum Thickness Constraints

FFD Control Point Variables. 
Movement allowed in +/- z-direction.
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Pitching Wing 29

Drag Coefficient Time Histories

Large drag reductions near the 
incidence of max drag 
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Pitching Wing 30

RANS (S-A) 
(incidence of max drag)
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Pitching Wing 31

Wing Section Shape Comparison 
RANS
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�����������������	Developed the first time-accurate continuous adjoint for the unsteady, 
compressible Navier-Stokes equations (ALE form) using shape calculus 

�����������������	Particular emphasis on boundary conditions, surface sensitivity, and 
simplifications (more details in article/thesis) 

�����������������	Formulation contains all of the complexity needed for treating large-
scale problems of industrial interest for unsteady flows on dynamic 
meshes (with a big enough computer…). See next part of talk for a 
number of future considerations. 

�����������������	Unlocks other time-dependent optimization problems such as 
aeroelastics, aeroacoustics, flow control, etc.

Unsteady Adjoitn Conclusions 32

Economon, T. D., Palacios, F., Alonso, J. J., “An Unsteady Continuous Adjoint Approach for Aerodynamic Design on Dynamic Meshes," AIAA 
Journal, accepted for publication, 2015.
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Future Directions for Adjoints



(Adjoint) State of the Union

• The solution of the RANS equations around complete aircraft configurations is 
an everyday occurrence in the aerospace industry. !
!

• Gradient-based optimization methods coupled with adjoint techniques for 
sensitivity analysis offer the most efficient process for detailed shape design.!
!

• However, their adoption for realistic problems in industrial settings has 
lagged due to several main difficulties: robustness, and an inability to 
handle large, complex meshes.!
!

• This situation merits a renewed focus on techniques that offer the additional 
flexibility to overcome these roadblocks, while also providing sufficient 
accuracy and computational performance.!
!

• Once the right tool is available the aircraft designers should develop a 
methodology to use this tool in the context of complex configurations.



Redesign of the NASA Common Research Model
The CRM is a low-wing, standard, tube-and-wing configuration. The on-design 
conditions are Mach 0.85 and a nominal lift of CL=0.5 at Re = 40 million per 
reference chord.
!
▪How does the adjoint perform for an industry-
relevant problem in aeronautics?  

▪Here, we consider complex geometry and 
conditions requiring unstructured meshes with 
tens of millions of cells running on hundreds or 
thousands of processing elements. RANS flow 
with the Navier-Stokes adjoint. 

▪What is the status in terms of accuracy & 
robustness? Any opportunities?  

▪What about computational performance?  



The SU2 suite is an open-source 
collection of C++ based software for 
PDE analysis and PDE-constrained 
optimization (i.e., Computational 
Fluid Dynamics!).!
!
SU2 is under active development at 
Stanford University in the Aerospace 
Design Lab (ADL) of the Department 
of Aeronautics and Astronautics and 
now in many places around the 
world.!
!
http://su2.stanford.edu/

2012 SU2 team, "Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and 
design", AIAA Paper 2013-0287.!
2013 SU2 team, "Stanford University Unstructured (SU2): Open-source analysis and design technology for turbulent flows", AIAA Paper 
2014-0243.

The Platform



Surface Formulation Assessment
The expression for the total variation of the functional can be simplified as follows 
with Σ depending on the gradient of the adjoint variables.

How accurate is this formula? It 
is exact for Navier-Stokes 
problems, it does not include 
mesh dependent issues and it 
is consistent with turbulence 
models.!
!

C. Castro, C. Lozano, F. Palacios, and E. Zuazua “A Systematic Continuous Adjoint Approach to Viscous Aerodynamic Design on 
Unstructured Grids”, AIAA Journal, 2007.!



Surface Formulation Assessment (Transonic)
• We said it was exact for Navier-Stokes problems, but we assumed a smooth 

flow solution in the derivation… what about shocks?!
• While formulations that explicitly treat shocks have been developed, in 

practice, it is unnecessary given that we will not see true discontinuities in the 
numerical solution of the primal problem.



Surface Formulation Assessment (Turbulence)
• While formulations that explicitly treat turbulence (S-A model) have also been 

developed, what happens if you “freeze” the viscosity?!
• With experience, we have found that in many situations (especially 

compressible, high Reynolds number flows), this is a good option due to its 
sufficient accuracy and efficiency/lower complexity.



Opportunities in Accuracy / Robustness
• We know that sharp edges can sometimes pose a problem for the surface formulation:!
• A number of techniques have been explored for dealing with inaccuracies in the gradient 

due to these locations, e.g., removal of these points from sensitivity formula.!
• Sharp edges could potentially be treated mathematically, but we have not made this 

extension.!
!

• Numerical methods for the convective terms of the continuous adjoint PDE:!
• These terms are typically treated in a non-conservative fashion with modified centered or 

upwind schemes.!
• In our experience, these terms are also the culprit in divergence, especially near 

leading edges, sharp edges, or poor quality mesh cells!!
• We are pursuing advanced numerical methods with custom dissipation sensors or upwind 

limiters for controlling this behavior. 

• What about complex problems with flow separation or multiple physics?!
• Discrete adjoints might be the best choice here, when numerically exact gradients are 

needed or the continuous derivations become overly complicated / impossible.!
• Comes at a cost of efficiency in compute and memory, but opportunities remain here for 

improving their performance as well.

1) Zhou, Y., Albring, T., Gauger, N., Economon, T. D., Palacios, F., and Alonso, J. J., "A Discrete Adjoint Framework for Unsteady Aerodynamic 
and Aeroacoustic Optimization," AIAA Aviation Forum 2015, Dallas, TX.!
2) Additional work recently submitted to AIAA SciTech 2016.



Design Using the Surface Formulation
• With this formulation it is possible to optimize airfoils or isolated wings using 

the design tool as a black box!!
• To do so, we choose suitable methods for geometry parameterization (design 

variables), mesh deformation, flow solution (PDE), and adjoint solution (PDE) 
and let a gradient-based optimizer drive the bus.

22 drag counts less, same CL and 
satisfying geometrical constraints



Redesign of the NASA Common Research Model
Goal: Redesign the wing and tail of the CRM for reduced drag in a number of 
scenarios that include realistic lift and pitching moment (trim) aerodynamic 
constraints along with wing thickness constraints using hundreds of design 
variables (FFD).

Some Highlights:!
▪Meaningful designs reached for all 
cases.!
▪Optimizer had a noticeable impact on 
results (scaling).!
▪Starting from different initial angles of 
attack allowed exploration of local 
minima.!
▪Constraints should be added 
incrementally in order to understand 
the problem…!
▪The role of the designer remains 
critical in guiding the process!!

Palacios, F.,  Economon, T. D., Alonso, J. J., "Large-scale aircraft design using SU2," AIAA Paper 2015-1946, 53rd AIAA Aerospace Sciences 
Meeting, AIAA SciTech, Kissimmee, FL, January, 2015.!



• Continuous adjoint in SU2 has no memory or time overhead compared with the flow 
solver – many solver components are reused for the adjoint. High-performance 
code optimizations can be immediately leveraged by the adjoint solver.!

• Potential for everyday design and optimization of complex engineering 
applications on a desktop workstation: revolutionize engineering practice.!

• Provide examples of a scalable, high-performance, open-source solutions to 
engineers and computational scientists around the world: exploit significant growth in 
available computing resources.

Center Overview

LM1021 Supersonic Low-Boom Configuration!
In collaboration with NASA and Lockheed-Martin

What about performance?!
Intel Parallel Computing Center at Stanford
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Single-node optimizations on both Xeon, Xeon Phi, for Implicit RANS!
• ONERA M6 test case was used for these experiments!
• Hot spots were identified with custom profiling/scaling tests!

➢Threading: Hybrid MPI+OpenMP!
• Improved cache usage, finer control with working-sets, more flexible work partitioning!

➢Efficient memory (cache) utilization - improve spatial/temporal locality !
• RCM with vertex ordering, Optimal data-structures: AoS à SoA!

➢Load-balancing - optimal scheduling and work distribution!
➢Vectorization - effectively utilize the available vector compute units!

• 8-wide on Xeon, 16-wide on Xeon Phi!
• Beneficial only for the compute intensive kernels – Edge loops, vectorized across edges using 

SIMD-enabled “Elemental Functions”

Single-Node Performance Optimizations

Key Idea: as modern architectures move toward many-core 
with more hardware threads and additional vector lanes, one 
must employ parallelism at multiple granularities 
simultaneously to extract performance.



Intel® Xeon® Intel® Xeon PhiTM (native execution)

• The base code is run on 48 MPI ranks on a single Xeon node and 240 ranks on a single Xeon Phi (“flat MPI”)!
• All others are in hybrid MPI+OpenMP mode: 4 MPI ranks x 12 OMP threads / rank (Xeon) and 4 MPI ranks x 60 

OMP threads / rank (Xeon Phi). !
• Results here are for explicit RK, inviscid ONERA M6: Small Mesh (94,493 points), Large Mesh (818,921 points) 

with 100 non-linear (outer) iterations!

Speedups from various optimizations



• Choice of algorithm has a major impact on scalability, linear solvers in particular.!

• We have been exploring the scalability of various algorithms for implicit RANS 
calculations: preconditioners, linear solvers, smoothers, etc.!

• Recent head-to-head comparisons show that a geometric linear multigrid solver has 
better scalability potential than traditional preconditioned Krylov-based methods.

Center OverviewScalable Algorithms

1) Economon, T. D. , Palacios, F., Alonso, J. J., Bansal, G., Mudigere, D., Deshpande, A., Heinecke, A., Smelyanskiy, M., "Towards High-
Performance Optimizations of the Unstructured Open-Source SU2 Suite," AIAA Paper 2015-1949, AIAA Infotech at Aerospace, AIAA SciTech, 
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Future Directions in Adjoints Conclusion

• This work has successfully demonstrated the use of the Navier-Stokes adjoint 
methodology in the SU2 suite for large-scale aerodynamic shape design with a 
realistic aircraft configuration, but… 

• Opportunities exist for improvements in accuracy/robustness:!
• Sharp edges!
• Advanced numerical methods!
• Discrete Adjoints!
!

• Given the current optimizer technology, the intuition, experience, and decision-
making ability of the designer remain critical in this type of complex, 
industrial design process. 

• Research in high-performance computing for CFD can directly improve 
continuous adjoints!
• Trend: leverage parallelism at multiple granularities simultaneously!
• Exploring scalable algorithms is critical for large-scale, industry-relevant 

applications




